Nuprl Lemma : int_add_grp_wf2
<ℤ+> ∈ OGrp
Proof
Definitions occuring in Statement : 
int_add_grp: <ℤ+>, 
ocgrp: OGrp, 
member: t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
ocgrp: OGrp, 
uall: ∀[x:A]. B[x], 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
prop: ℙ, 
and: P ∧ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
infix_ap: x f y, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bfalse: ff, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
abgrp: AbGrp, 
grp: Group{i}, 
int_add_grp: <ℤ+>, 
grp_car: |g|, 
pi1: fst(t), 
grp_le: ≤b, 
pi2: snd(t), 
grp_eq: =b, 
grp_op: *, 
le: A ≤ B, 
not: ¬A, 
false: False, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
monot: monot(T;x,y.R[x; y];f), 
ulinorder: UniformLinorder(T;x,y.R[x; y]), 
uorder: UniformOrder(T;x,y.R[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
cancel: Cancel(T;S;op), 
inverse: Inverse(T;op;id;inv), 
grp_inv: ~, 
grp_id: e, 
cand: A c∧ B
Lemmas referenced : 
inverse_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
grp_inv_wf, 
ulinorder_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
uall_wf, 
monot_wf, 
int_add_grp_wf, 
subtype_rel_sets, 
mon_wf, 
comm_wf, 
set_wf, 
ulinorder_functionality_wrt_iff, 
le_int_wf, 
le_wf, 
assert_of_le_int, 
less_than'_wf, 
assert_witness, 
monot_functionality, 
iff_weakening_uiff, 
decidable__le, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformand_wf, 
int_formula_prop_and_lemma, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__or, 
intformor_wf, 
int_formula_prop_or_lemma, 
iff_imp_equal_bool, 
eq_int_wf, 
band_wf, 
equal-wf-base, 
int_subtype_base, 
assert_of_eq_int, 
iff_transitivity, 
assert_of_band, 
iff_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
itermMinus_wf, 
itermConstant_wf, 
int_term_value_minus_lemma, 
int_term_value_constant_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
productEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
instantiate, 
setEquality, 
cumulativity, 
independent_pairFormation, 
intEquality, 
isect_memberFormation, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
voidElimination, 
addEquality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidEquality, 
computeAll, 
functionExtensionality, 
addLevel, 
impliesFunctionality, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
<\mBbbZ{}+>  \mmember{}  OGrp
Date html generated:
2017_10_01-AM-08_16_56
Last ObjectModification:
2017_02_28-PM-02_02_34
Theory : groups_1
Home
Index