Nuprl Lemma : cancel_wf

[T,S:Type]. ∀[op:S ⟶ T ⟶ T].  (Cancel(T;S;op) ∈ ℙ)


Proof




Definitions occuring in Statement :  cancel: Cancel(T;S;op) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  cancel: Cancel(T;S;op) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a infix_ap: y prop: so_apply: x[s]
Lemmas referenced :  uall_wf isect_wf equal_wf infix_ap_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality because_Cache functionExtensionality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T,S:Type].  \mforall{}[op:S  {}\mrightarrow{}  T  {}\mrightarrow{}  T].    (Cancel(T;S;op)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_01-AM-08_12_58
Last ObjectModification: 2017_02_28-PM-01_57_07

Theory : gen_algebra_1


Home Index