Nuprl Lemma : assert_of_eq_int
∀[x,y:ℤ].  uiff(↑(x =z y);x = y ∈ ℤ)
Proof
Definitions occuring in Statement : 
assert: ↑b, 
eq_int: (i =z j), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
subtype_rel: A ⊆r B, 
false: False, 
true: True, 
bool: 𝔹, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
prop: ℙ, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
eq_int: (i =z j), 
or: P ∨ Q, 
not: ¬A, 
guard: {T}, 
sq_type: SQType(T), 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
bfalse: ff, 
btrue: tt
Lemmas referenced : 
int_subtype_base, 
equal-wf-base, 
equal_wf, 
false_wf, 
true_wf, 
bool_wf, 
eq_int_wf, 
assert_wf, 
add-monotonic, 
less_than_wf, 
subtype_base_sq, 
less-trichotomy
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
applyEquality, 
intEquality, 
independent_functionElimination, 
dependent_functionElimination, 
voidElimination, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
unionElimination, 
lambdaFormation, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
addInverse, 
inlFormation, 
minusEquality, 
independent_isectElimination, 
cumulativity, 
instantiate, 
imageElimination, 
int_eqReduceFalseSq, 
Error :lambdaFormation_alt, 
Error :equalityIsType4, 
Error :inhabitedIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
hyp_replacement, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
natural_numberEquality, 
int_eqReduceTrueSq
Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(\muparrow{}(x  =\msubz{}  y);x  =  y)
Date html generated:
2019_06_20-AM-11_20_10
Last ObjectModification:
2018_10_15-PM-07_38_41
Theory : union
Home
Index