Nuprl Lemma : itermVar_wf
∀[var:ℤ]. (vvar ∈ int_term())
Proof
Definitions occuring in Statement :
itermVar: vvar
,
int_term: int_term()
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int_term: int_term()
,
itermVar: vvar
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
subtype_rel: A ⊆r B
,
ext-eq: A ≡ B
,
and: P ∧ Q
,
int_termco_size: int_termco_size(p)
,
int_term_size: int_term_size(p)
,
has-value: (a)↓
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
Lemmas referenced :
int_termco-ext,
ifthenelse_wf,
eq_atom_wf,
int_termco_wf,
istype-void,
le_wf,
has-value_wf_base,
set_subtype_base,
istype-int,
int_subtype_base,
is-exception_wf,
has-value_wf-partial,
nat_wf,
set-value-type,
int-value-type,
int_termco_size_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
cut,
Error :dependent_set_memberEquality_alt,
introduction,
extract_by_obid,
hypothesis,
sqequalRule,
Error :dependent_pairEquality_alt,
tokenEquality,
hypothesisEquality,
Error :universeIsType,
thin,
instantiate,
sqequalHypSubstitution,
isectElimination,
universeEquality,
intEquality,
productEquality,
voidEquality,
applyEquality,
productElimination,
natural_numberEquality,
independent_pairFormation,
Error :lambdaFormation_alt,
Error :inhabitedIsType,
divergentSqle,
sqleReflexivity,
Error :lambdaEquality_alt,
independent_isectElimination,
because_Cache,
Error :equalityIsType1,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination
Latex:
\mforall{}[var:\mBbbZ{}]. (vvar \mmember{} int\_term())
Date html generated:
2019_06_20-PM-00_44_52
Last ObjectModification:
2018_10_03-AM-00_45_36
Theory : omega
Home
Index