Nuprl Lemma : has-value_wf-partial

[A:Type]. ∀[a:partial(A)]. ((a)↓ ∈ ℙsupposing value-type(A)


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a partial: partial(T) prop: quotient: x,y:A//B[x; y] and: P ∧ Q per-partial: per-partial(T;x;y) uiff: uiff(P;Q) iff: ⇐⇒ Q implies:  Q rev_implies:  Q
Lemmas referenced :  partial_wf value-type_wf has-value-extensionality has-value_wf_base equal-wf-base base-partial_wf per-partial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache universeEquality pointwiseFunctionalityForEquality pertypeElimination productElimination independent_isectElimination independent_pairFormation lambdaFormation productEquality cumulativity

Latex:
\mforall{}[A:Type].  \mforall{}[a:partial(A)].  ((a)\mdownarrow{}  \mmember{}  \mBbbP{})  supposing  value-type(A)



Date html generated: 2016_05_14-AM-06_09_40
Last ObjectModification: 2015_12_26-AM-11_52_14

Theory : partial_1


Home Index