Nuprl Lemma : has-value_wf-partial
∀[A:Type]. ∀[a:partial(A)]. ((a)↓ ∈ ℙ) supposing value-type(A)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
partial: partial(T)
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
per-partial: per-partial(T;x;y)
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
partial_wf, 
value-type_wf, 
has-value-extensionality, 
has-value_wf_base, 
equal-wf-base, 
base-partial_wf, 
per-partial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
productEquality, 
cumulativity
Latex:
\mforall{}[A:Type].  \mforall{}[a:partial(A)].  ((a)\mdownarrow{}  \mmember{}  \mBbbP{})  supposing  value-type(A)
Date html generated:
2016_05_14-AM-06_09_40
Last ObjectModification:
2015_12_26-AM-11_52_14
Theory : partial_1
Home
Index