Nuprl Lemma : per-partial_wf

[T:Type]. ∀[x,y:Base].  (per-partial(T;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  per-partial: per-partial(T;x;y) uall: [x:A]. B[x] prop: member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T per-partial: per-partial(T;x;y) prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  base_wf has-value_wf_base equal-wf-base and_wf uiff_wf isect_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isect_memberEquality isectElimination thin hypothesisEquality because_Cache universeEquality lambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:Base].    (per-partial(T;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_09_21
Last ObjectModification: 2015_12_26-AM-11_52_27

Theory : partial_1


Home Index