Nuprl Definition : per-partial

per-partial(T;x;y) ==  uiff((x)↓;(y)↓) ∧ y ∈ supposing (x)↓



Definitions occuring in Statement :  has-value: (a)↓ uiff: uiff(P;Q) uimplies: supposing a and: P ∧ Q equal: t ∈ T
Definitions occuring in definition :  and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a has-value: (a)↓ equal: t ∈ T
FDL editor aliases :  per-partial

Latex:
per-partial(T;x;y)  ==    uiff((x)\mdownarrow{};(y)\mdownarrow{})  \mwedge{}  x  =  y  supposing  (x)\mdownarrow{}



Date html generated: 2016_05_14-AM-06_09_20
Last ObjectModification: 2015_09_22-PM-05_46_14

Theory : partial_1


Home Index