Nuprl Lemma : partial_wf

[T:Type]. (partial(T) ∈ Type)


Proof




Definitions occuring in Statement :  partial: partial(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T partial: partial(T) so_lambda: λ2y.t[x; y] base-partial: base-partial(T) so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  quotient_wf base-partial_wf per-partial_wf per-partial-equiv_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality because_Cache setElimination rename independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (partial(T)  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_09_25
Last ObjectModification: 2015_12_26-AM-11_52_24

Theory : partial_1


Home Index