Nuprl Lemma : iff_weakening_uiff
∀[P,Q:ℙ].  (uiff(P;Q) ⇒ (P ⇐⇒ Q))
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
uiff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
Error :inhabitedIsType, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    (uiff(P;Q)  {}\mRightarrow{}  (P  \mLeftarrow{}{}\mRightarrow{}  Q))
Date html generated:
2019_06_20-AM-11_14_02
Last ObjectModification:
2018_09_26-AM-10_41_47
Theory : core_2
Home
Index