Nuprl Lemma : le_int_wf
∀[i,j:ℤ].  (i ≤z j ∈ 𝔹)
Proof
Definitions occuring in Statement : 
le_int: i ≤z j
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
le_int: i ≤z j
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
bnot_wf, 
lt_int_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
isect_memberEquality, 
intEquality
Latex:
\mforall{}[i,j:\mBbbZ{}].    (i  \mleq{}z  j  \mmember{}  \mBbbB{})
Date html generated:
2016_05_13-PM-03_55_49
Last ObjectModification:
2015_12_26-AM-10_52_55
Theory : bool_1
Home
Index