Nuprl Lemma : le_int_wf

[i,j:ℤ].  (i ≤j ∈ 𝔹)


Proof




Definitions occuring in Statement :  le_int: i ≤j bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  le_int: i ≤j uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  bnot_wf lt_int_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry because_Cache isect_memberEquality intEquality

Latex:
\mforall{}[i,j:\mBbbZ{}].    (i  \mleq{}z  j  \mmember{}  \mBbbB{})



Date html generated: 2016_05_13-PM-03_55_49
Last ObjectModification: 2015_12_26-AM-10_52_55

Theory : bool_1


Home Index