Nuprl Lemma : mon_when_of_id
∀[g:IMonoid]. ∀[b:𝔹].  ((when b. e) = e ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_when: when b. p, 
imon: IMonoid, 
grp_id: e, 
grp_car: |g|, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
mon_when: when b. p, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
imon: IMonoid, 
bfalse: ff
Lemmas referenced : 
grp_id_wf, 
bool_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[g:IMonoid].  \mforall{}[b:\mBbbB{}].    ((when  b.  e)  =  e)
 Date html generated: 
2016_05_15-PM-00_18_41
 Last ObjectModification: 
2015_12_26-PM-11_38_14
Theory : groups_1
Home
Index