Nuprl Lemma : monoid_hom_p_wf
∀[a,b:GrpSig]. ∀[f:|a| ⟶ |b|]. (IsMonHom{a,b}(f) ∈ ℙ)
Proof
Definitions occuring in Statement :
monoid_hom_p: IsMonHom{M1,M2}(f)
,
grp_car: |g|
,
grp_sig: GrpSig
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
monoid_hom_p: IsMonHom{M1,M2}(f)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
and_wf,
fun_thru_2op_wf,
grp_car_wf,
grp_op_wf,
equal_wf,
grp_id_wf,
grp_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
applyEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[a,b:GrpSig]. \mforall{}[f:|a| {}\mrightarrow{} |b|]. (IsMonHom\{a,b\}(f) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-00_09_46
Last ObjectModification:
2015_12_26-PM-11_45_13
Theory : groups_1
Home
Index