Step
*
2
1
of Lemma
add-ipoly-ringeq
1. r : Rng
2. n : ℤ
3. 0 < n
4. ∀p,q:iMonomial() List.
(||p|| + ||q|| < n - 1
⇒ ipolynomial-term(add-ipoly(p;q)) ≡ ipolynomial-term(p) (+) ipolynomial-term(q))
5. q : iMonomial() List
6. ||[]|| + ||q|| < n
⊢ ipolynomial-term(q) ≡ ipolynomial-term([]) (+) ipolynomial-term(q)
BY
{ ((GenConclTerm ⌜ipolynomial-term(q)⌝⋅ THENA Auto)
THEN Unfold `ipolynomial-term` 0
THEN Reduce 0
THEN D 0
THEN Auto
THEN Unfold `ring_term_value` 0
THEN Reduce 0
THEN Fold `ring_term_value` 0
THEN Auto) }
1
1. r : Rng
2. n : ℤ
3. 0 < n
4. ∀p,q:iMonomial() List.
(||p|| + ||q|| < n - 1
⇒ ipolynomial-term(add-ipoly(p;q)) ≡ ipolynomial-term(p) (+) ipolynomial-term(q))
5. q : iMonomial() List
6. ||[]|| + ||q|| < n
7. v : int_term()
8. ipolynomial-term(q) = v ∈ int_term()
9. f : ℤ ⟶ |r|
⊢ ring_term_value(f;v) = (int-to-ring(r;0) +r ring_term_value(f;v)) ∈ |r|
Latex:
Latex:
1. r : Rng
2. n : \mBbbZ{}
3. 0 < n
4. \mforall{}p,q:iMonomial() List.
(||p|| + ||q|| < n - 1
{}\mRightarrow{} ipolynomial-term(add-ipoly(p;q)) \mequiv{} ipolynomial-term(p) (+) ipolynomial-term(q))
5. q : iMonomial() List
6. ||[]|| + ||q|| < n
\mvdash{} ipolynomial-term(q) \mequiv{} ipolynomial-term([]) (+) ipolynomial-term(q)
By
Latex:
((GenConclTerm \mkleeneopen{}ipolynomial-term(q)\mkleeneclose{}\mcdot{} THENA Auto)
THEN Unfold `ipolynomial-term` 0
THEN Reduce 0
THEN D 0
THEN Auto
THEN Unfold `ring\_term\_value` 0
THEN Reduce 0
THEN Fold `ring\_term\_value` 0
THEN Auto)
Home
Index