Nuprl Lemma : add_grp_of_rng_wf
∀[r:RngSig]. (r↓+gp ∈ GrpSig)
Proof
Definitions occuring in Statement : 
add_grp_of_rng: r↓+gp
, 
rng_sig: RngSig
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
add_grp_of_rng: r↓+gp
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
rng_car_wf, 
rng_eq_wf, 
rng_le_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
bool_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
dependent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
functionEquality, 
productEquality, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r:RngSig].  (r\mdownarrow{}+gp  \mmember{}  GrpSig)
Date html generated:
2016_05_15-PM-00_21_10
Last ObjectModification:
2015_12_27-AM-00_02_31
Theory : rings_1
Home
Index