Nuprl Lemma : add_grp_of_rng_wf

[r:RngSig]. (r↓+gp ∈ GrpSig)


Proof




Definitions occuring in Statement :  add_grp_of_rng: r↓+gp rng_sig: RngSig grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  add_grp_of_rng: r↓+gp grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  rng_car_wf rng_eq_wf rng_le_wf rng_plus_wf rng_zero_wf rng_minus_wf bool_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut dependent_pairEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache functionEquality productEquality cumulativity axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:RngSig].  (r\mdownarrow{}+gp  \mmember{}  GrpSig)



Date html generated: 2016_05_15-PM-00_21_10
Last ObjectModification: 2015_12_27-AM-00_02_31

Theory : rings_1


Home Index