Nuprl Lemma : all_rng_quot_elim_a

r:CRng. ∀p:Ideal(r){i}.
  ((∀x:|r|. SqStable(p x))
   (∀d:detach_fun(|r|;p)
        ∀[F:|r d| ⟶ ℙ]. ((∀w:|r d|. SqStable(F[w]))  (∀w:|r d|. F[w] ⇐⇒ ∀w:|r|. F[[w]{|r d|}]))))


Proof




Definitions occuring in Statement :  quot_ring: d ideal: Ideal(r){i} crng: CRng rng_car: |r| detach_fun: detach_fun(T;A) type_inj: [x]{T} sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  type_inj: [x]{T}
Lemmas referenced :  all_rng_quot_elim
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid hypothesis

Latex:
\mforall{}r:CRng.  \mforall{}p:Ideal(r)\{i\}.
    ((\mforall{}x:|r|.  SqStable(p  x))
    {}\mRightarrow{}  (\mforall{}d:detach\_fun(|r|;p)
                \mforall{}[F:|r  /  d|  {}\mrightarrow{}  \mBbbP{}]
                    ((\mforall{}w:|r  /  d|.  SqStable(F[w]))  {}\mRightarrow{}  (\mforall{}w:|r  /  d|.  F[w]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}w:|r|.  F[[w]\{|r  /  d|\}]))))



Date html generated: 2016_05_15-PM-00_24_36
Last ObjectModification: 2015_12_27-AM-00_00_20

Theory : rings_1


Home Index