Nuprl Lemma : all_rng_quot_elim

r:CRng. ∀p:Ideal(r){i}.
  ((∀x:|r|. SqStable(p x))
   (∀d:detach_fun(|r|;p). ∀[F:|r d| ⟶ ℙ]. ((∀w:|r d|. SqStable(F[w]))  (∀w:|r d|. F[w] ⇐⇒ ∀w:|r|. F[w]))))


Proof




Definitions occuring in Statement :  quot_ring: d ideal: Ideal(r){i} crng: CRng rng_car: |r| detach_fun: detach_fun(T;A) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T crng: CRng rng: Rng prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q sq_stable: SqStable(P) ideal: Ideal(r){i} detach_fun: detach_fun(T;A) quot_ring: d rng_car: |r| pi1: fst(t) quot_ring_car: Carrier(r/d) quotient: x,y:A//B[x; y] squash: T infix_ap: y
Lemmas referenced :  rng_car_wf all_wf quot_ring_wf rng_subtype_rng_sig crng_subtype_rng subtype_rel_transitivity crng_wf rng_wf rng_sig_wf detach_fun_properties squash_wf equal-wf-base assert_wf rng_plus_wf rng_minus_wf quot_ring_car_subtype sq_stable_wf detach_fun_wf ideal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_functionElimination applyEquality instantiate independent_isectElimination sqequalRule lambdaEquality because_Cache dependent_functionElimination pointwiseFunctionalityForEquality pertypeElimination productElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}r:CRng.  \mforall{}p:Ideal(r)\{i\}.
    ((\mforall{}x:|r|.  SqStable(p  x))
    {}\mRightarrow{}  (\mforall{}d:detach\_fun(|r|;p)
                \mforall{}[F:|r  /  d|  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}w:|r  /  d|.  SqStable(F[w]))  {}\mRightarrow{}  (\mforall{}w:|r  /  d|.  F[w]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}w:|r|.  F[w]))))



Date html generated: 2018_05_21-PM-03_14_41
Last ObjectModification: 2018_05_19-AM-08_07_56

Theory : rings_1


Home Index