Nuprl Lemma : quot_ring_wf
∀[r:CRng]. ∀[a:Ideal(r){i}].  ((∀x:|r|. SqStable(a x)) 
⇒ (∀[d:detach_fun(|r|;a)]. (r / d ∈ CRng)))
Proof
Definitions occuring in Statement : 
quot_ring: r / d
, 
ideal: Ideal(r){i}
, 
crng: CRng
, 
rng_car: |r|
, 
detach_fun: detach_fun(T;A)
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
ideal: Ideal(r){i}
, 
crng: CRng
, 
rng: Rng
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
detach_fun: detach_fun(T;A)
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
quot_ring: r / d
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_plus: +r
, 
pi2: snd(t)
, 
rng_zero: 0
, 
rng_minus: -r
, 
rng_times: *
, 
rng_one: 1
, 
bilinear: BiLinear(T;pl;tm)
, 
monoid_p: IsMonoid(T;op;id)
, 
group_p: IsGroup(T;op;id;inv)
, 
infix_ap: x f y
, 
ident: Ident(T;op;id)
, 
assoc: Assoc(T;op)
, 
inverse: Inverse(T;op;id;inv)
, 
quot_ring_car: Carrier(r/d)
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
ideal_p: S Ideal of R
, 
subgrp_p: s SubGrp of g
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
grp_op: *
, 
grp_id: e
, 
comm: Comm(T;op)
Lemmas referenced : 
detach_fun_properties, 
rng_car_wf, 
quot_ring_car_wf, 
ideal_p_wf, 
subtype_rel_self, 
istype-assert, 
quot_ring_sig, 
detach_fun_wf, 
sq_stable_wf, 
ideal_wf, 
crng_wf, 
comm_wf, 
rng_times_wf, 
ring_p_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_one_wf, 
quotient-member-eq, 
assert_wf, 
ideal-detach-equiv, 
rng_times_assoc, 
iff_weakening_equal, 
rng_times_one, 
sq_stable_functionality, 
rng_minus_over_plus, 
rng_plus_assoc, 
rng_plus_ac_1, 
rng_plus_comm, 
rng_plus_zero, 
rng_minus_zero, 
rng_plus_inv, 
rng_times_over_plus, 
rng_times_over_minus, 
crng_times_ac_1, 
crng_times_comm, 
rng_plus_inv_assoc, 
grp_car_wf, 
add_grp_of_rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
because_Cache, 
universeIsType, 
sqequalRule, 
functionIsType, 
productIsType, 
applyEquality, 
instantiate, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
independent_pairFormation, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
promote_hyp, 
productElimination, 
independent_isectElimination, 
equalityIstype, 
sqequalBase, 
independent_pairEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[a:Ideal(r)\{i\}].    ((\mforall{}x:|r|.  SqStable(a  x))  {}\mRightarrow{}  (\mforall{}[d:detach\_fun(|r|;a)].  (r  /  d  \mmember{}  CRng)))
Date html generated:
2019_10_15-AM-10_33_46
Last ObjectModification:
2019_06_20-PM-06_43_59
Theory : rings_1
Home
Index