Nuprl Lemma : quot_ring_car_wf

[r:CRng]. ∀[a:Ideal(r){i}].  ((∀x:|r|. SqStable(a x))  (∀[d:detach_fun(|r|;a)]. (Carrier(r/d) ∈ Type)))


Proof




Definitions occuring in Statement :  quot_ring_car: Carrier(r/d) ideal: Ideal(r){i} crng: CRng rng_car: |r| detach_fun: detach_fun(T;A) sq_stable: SqStable(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T apply: a universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q quot_ring_car: Carrier(r/d) crng: CRng rng: Rng so_lambda: λ2y.t[x; y] detach_fun: detach_fun(T;A) so_apply: x[s1;s2] uimplies: supposing a ideal: Ideal(r){i} prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  quotient_wf rng_car_wf assert_wf infix_ap_wf rng_plus_wf rng_minus_wf detach_fun_wf all_wf sq_stable_wf ideal_wf crng_wf det_ideal_defines_eqv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination isect_memberEquality independent_functionElimination

Latex:
\mforall{}[r:CRng].  \mforall{}[a:Ideal(r)\{i\}].
    ((\mforall{}x:|r|.  SqStable(a  x))  {}\mRightarrow{}  (\mforall{}[d:detach\_fun(|r|;a)].  (Carrier(r/d)  \mmember{}  Type)))



Date html generated: 2016_05_15-PM-00_23_32
Last ObjectModification: 2015_12_27-AM-00_00_37

Theory : rings_1


Home Index