Nuprl Lemma : det_ideal_defines_eqv
∀[r:CRng]. ∀[a:Ideal(r){i}]. ∀[d:detach_fun(|r|;a)].  ((∀w:|r|. SqStable(a w)) 
⇒ EquivRel(|r|;u,v.↑(d (u +r (-r v)))))
Proof
Definitions occuring in Statement : 
ideal: Ideal(r){i}
, 
crng: CRng
, 
rng_minus: -r
, 
rng_plus: +r
, 
rng_car: |r|
, 
detach_fun: detach_fun(T;A)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
assert: ↑b
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
ideal: Ideal(r){i}
, 
so_apply: x[s]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
detach_fun: detach_fun(T;A)
, 
infix_ap: x f y
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
sq_stable__ideal_p, 
ideal_defines_eqv, 
equiv_rel_functionality_wrt_iff, 
detach_fun_properties, 
crng_wf, 
ideal_wf, 
detach_fun_wf, 
assert_wf, 
rng_minus_wf, 
rng_plus_wf, 
assert_witness, 
sq_stable_wf, 
rng_car_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[r:CRng].  \mforall{}[a:Ideal(r)\{i\}].  \mforall{}[d:detach\_fun(|r|;a)].
    ((\mforall{}w:|r|.  SqStable(a  w))  {}\mRightarrow{}  EquivRel(|r|;u,v.\muparrow{}(d  (u  +r  (-r  v)))))
Date html generated:
2016_05_15-PM-00_23_23
Last ObjectModification:
2016_01_15-AM-08_51_39
Theory : rings_1
Home
Index