Nuprl Lemma : det_ideal_defines_eqv

[r:CRng]. ∀[a:Ideal(r){i}]. ∀[d:detach_fun(|r|;a)].  ((∀w:|r|. SqStable(a w))  EquivRel(|r|;u,v.↑(d (u +r (-r v)))))


Proof




Definitions occuring in Statement :  ideal: Ideal(r){i} crng: CRng rng_minus: -r rng_plus: +r rng_car: |r| detach_fun: detach_fun(T;A) equiv_rel: EquivRel(T;x,y.E[x; y]) assert: b sq_stable: SqStable(P) uall: [x:A]. B[x] infix_ap: y all: x:A. B[x] implies:  Q apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: crng: CRng rng: Rng so_lambda: λ2x.t[x] ideal: Ideal(r){i} so_apply: x[s] equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] detach_fun: detach_fun(T;A) infix_ap: y sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) squash: T
Lemmas referenced :  sq_stable__ideal_p ideal_defines_eqv equiv_rel_functionality_wrt_iff detach_fun_properties crng_wf ideal_wf detach_fun_wf assert_wf rng_minus_wf rng_plus_wf assert_witness sq_stable_wf rng_car_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality dependent_functionElimination productElimination independent_pairEquality independent_functionElimination isect_memberEquality because_Cache independent_isectElimination independent_pairFormation imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[r:CRng].  \mforall{}[a:Ideal(r)\{i\}].  \mforall{}[d:detach\_fun(|r|;a)].
    ((\mforall{}w:|r|.  SqStable(a  w))  {}\mRightarrow{}  EquivRel(|r|;u,v.\muparrow{}(d  (u  +r  (-r  v)))))



Date html generated: 2016_05_15-PM-00_23_23
Last ObjectModification: 2016_01_15-AM-08_51_39

Theory : rings_1


Home Index