Nuprl Lemma : equiv_rel_functionality_wrt_iff
∀[T,T':Type]. ∀[E:T ⟶ T ⟶ ℙ]. ∀[E':T' ⟶ T' ⟶ ℙ].
  (∀x,y:T.  (E[x;y] 
⇐⇒ E'[x;y])) 
⇒ (EquivRel(T;x,y.E[x;y]) 
⇐⇒ EquivRel(T';x,y.E'[x;y])) supposing T = T' ∈ Type
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_apply: x[s]
, 
refl: Refl(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
ext-eq_weakening, 
subtype_rel_weakening, 
iff_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
because_Cache, 
instantiate, 
universeEquality, 
functionEquality, 
cumulativity, 
productElimination, 
productEquality, 
addLevel, 
independent_pairFormation, 
impliesFunctionality, 
allFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
andLevelFunctionality, 
allLevelFunctionality, 
impliesLevelFunctionality, 
equalitySymmetry
Latex:
\mforall{}[T,T':Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[E':T'  {}\mrightarrow{}  T'  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x,y:T.    (E[x;y]  \mLeftarrow{}{}\mRightarrow{}  E'[x;y]))  {}\mRightarrow{}  (EquivRel(T;x,y.E[x;y])  \mLeftarrow{}{}\mRightarrow{}  EquivRel(T';x,y.E'[x;y])) 
    supposing  T  =  T'
Date html generated:
2016_05_13-PM-04_15_23
Last ObjectModification:
2016_01_05-PM-01_47_39
Theory : rel_1
Home
Index