Nuprl Lemma : equiv_rel_functionality_wrt_iff

[T,T':Type]. ∀[E:T ⟶ T ⟶ ℙ]. ∀[E':T' ⟶ T' ⟶ ℙ].
  (∀x,y:T.  (E[x;y] ⇐⇒ E'[x;y]))  (EquivRel(T;x,y.E[x;y]) ⇐⇒ EquivRel(T';x,y.E'[x;y])) supposing T' ∈ Type


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B guard: {T} so_apply: x[s] refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) iff: ⇐⇒ Q and: P ∧ Q all: x:A. B[x] rev_implies:  Q
Lemmas referenced :  equal_wf ext-eq_weakening subtype_rel_weakening iff_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction axiomEquality hypothesis thin rename lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality independent_isectElimination because_Cache instantiate universeEquality functionEquality cumulativity productElimination productEquality addLevel independent_pairFormation impliesFunctionality allFunctionality dependent_functionElimination independent_functionElimination andLevelFunctionality allLevelFunctionality impliesLevelFunctionality equalitySymmetry

Latex:
\mforall{}[T,T':Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[E':T'  {}\mrightarrow{}  T'  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x,y:T.    (E[x;y]  \mLeftarrow{}{}\mRightarrow{}  E'[x;y]))  {}\mRightarrow{}  (EquivRel(T;x,y.E[x;y])  \mLeftarrow{}{}\mRightarrow{}  EquivRel(T';x,y.E'[x;y])) 
    supposing  T  =  T'



Date html generated: 2016_05_13-PM-04_15_23
Last ObjectModification: 2016_01_05-PM-01_47_39

Theory : rel_1


Home Index