Nuprl Lemma : rng_minus_zero

[r:Rng]. ((-r 0) 0 ∈ |r|)


Proof




Definitions occuring in Statement :  rng: Rng rng_minus: -r rng_zero: 0 rng_car: |r| uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_inv: ~ pi2: snd(t) grp_id: e
Lemmas referenced :  grp_inv_id add_grp_of_rng_wf_a grp_subtype_igrp rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule

Latex:
\mforall{}[r:Rng].  ((-r  0)  =  0)



Date html generated: 2016_05_15-PM-00_21_17
Last ObjectModification: 2015_12_27-AM-00_02_19

Theory : rings_1


Home Index