Nuprl Lemma : rng_minus_zero
∀[r:Rng]. ((-r 0) = 0 ∈ |r|)
Proof
Definitions occuring in Statement : 
rng: Rng, 
rng_minus: -r, 
rng_zero: 0, 
rng_car: |r|, 
uall: ∀[x:A]. B[x], 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
add_grp_of_rng: r↓+gp, 
grp_car: |g|, 
pi1: fst(t), 
grp_inv: ~, 
pi2: snd(t), 
grp_id: e
Lemmas referenced : 
grp_inv_id, 
add_grp_of_rng_wf_a, 
grp_subtype_igrp, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule
Latex:
\mforall{}[r:Rng].  ((-r  0)  =  0)
Date html generated:
2016_05_15-PM-00_21_17
Last ObjectModification:
2015_12_27-AM-00_02_19
Theory : rings_1
Home
Index