Nuprl Lemma : grp_inv_id

[g:IGroup]. ((~ e) e ∈ |g|)


Proof




Definitions occuring in Statement :  igrp: IGroup grp_inv: ~ grp_id: e grp_car: |g| uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: igrp: IGroup imon: IMonoid and: P ∧ Q true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  igrp_wf equal_wf squash_wf true_wf grp_car_wf grp_inv_wf grp_id_wf grp_inverse iff_weakening_equal mon_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid hypothesis applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination isectElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality setElimination rename because_Cache productElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[g:IGroup].  ((\msim{}  e)  =  e)



Date html generated: 2017_10_01-AM-08_13_35
Last ObjectModification: 2017_02_28-PM-01_57_51

Theory : groups_1


Home Index