Nuprl Lemma : add_grp_of_rng_wf_a

[r:Rng]. (r↓+gp ∈ Group{i})


Proof




Definitions occuring in Statement :  add_grp_of_rng: r↓+gp rng: Rng grp: Group{i} uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q add_grp_of_rng: r↓+gp rng: Rng uimplies: supposing a
Lemmas referenced :  rng_wf rng_all_properties mk_grp rng_car_wf rng_eq_wf rng_le_wf rng_plus_wf rng_zero_wf rng_minus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality productElimination setElimination rename independent_isectElimination

Latex:
\mforall{}[r:Rng].  (r\mdownarrow{}+gp  \mmember{}  Group\{i\})



Date html generated: 2016_05_15-PM-00_21_12
Last ObjectModification: 2015_12_27-AM-00_02_22

Theory : rings_1


Home Index