Nuprl Lemma : crng_times_ac_1
∀[r:CRng]. ∀[a,b,c:|r|].  ((a * (b * c)) = (b * (a * c)) ∈ |r|)
Proof
Definitions occuring in Statement : 
crng: CRng
, 
rng_times: *
, 
rng_car: |r|
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
mul_mon_of_rng: r↓xmn
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
crng: CRng
, 
rng: Rng
Lemmas referenced : 
abmonoid_ac_1, 
mul_mon_of_rng_wf_b, 
abmonoid_subtype_iabmonoid, 
rng_car_wf, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
setElimination, 
rename
Latex:
\mforall{}[r:CRng].  \mforall{}[a,b,c:|r|].    ((a  *  (b  *  c))  =  (b  *  (a  *  c)))
Date html generated:
2016_05_15-PM-00_21_35
Last ObjectModification:
2015_12_27-AM-00_01_57
Theory : rings_1
Home
Index