Nuprl Lemma : crng_times_ac_1

[r:CRng]. ∀[a,b,c:|r|].  ((a (b c)) (b (a c)) ∈ |r|)


Proof




Definitions occuring in Statement :  crng: CRng rng_times: * rng_car: |r| uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B mul_mon_of_rng: r↓xmn grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) crng: CRng rng: Rng
Lemmas referenced :  abmonoid_ac_1 mul_mon_of_rng_wf_b abmonoid_subtype_iabmonoid rng_car_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule isect_memberEquality axiomEquality setElimination rename

Latex:
\mforall{}[r:CRng].  \mforall{}[a,b,c:|r|].    ((a  *  (b  *  c))  =  (b  *  (a  *  c)))



Date html generated: 2016_05_15-PM-00_21_35
Last ObjectModification: 2015_12_27-AM-00_01_57

Theory : rings_1


Home Index