Nuprl Lemma : abmonoid_ac_1

[g:IAbMonoid]. ∀[a,b,c:|g|].  ((a (b c)) (b (a c)) ∈ |g|)


Proof




Definitions occuring in Statement :  iabmonoid: IAbMonoid grp_op: * grp_car: |g| uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iabmonoid: IAbMonoid imon: IMonoid squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q infix_ap: y
Lemmas referenced :  grp_car_wf iabmonoid_wf equal_wf squash_wf true_wf mon_assoc iff_weakening_equal grp_op_wf abmonoid_comm infix_ap_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[g:IAbMonoid].  \mforall{}[a,b,c:|g|].    ((a  *  (b  *  c))  =  (b  *  (a  *  c)))



Date html generated: 2017_10_01-AM-08_13_28
Last ObjectModification: 2017_02_28-PM-01_57_38

Theory : groups_1


Home Index