Nuprl Lemma : rng_plus_ac_1
∀[r:Rng]. ∀[a,b,c:|r|].  ((a +r (b +r c)) = (b +r (a +r c)) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng: Rng
, 
rng_plus: +r
, 
rng_car: |r|
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
mon: Mon
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
rng: Rng
Lemmas referenced : 
abmonoid_ac_1, 
add_grp_of_rng_wf_b, 
subtype_rel_sets, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
comm_wf, 
set_wf, 
rng_car_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
instantiate, 
setEquality, 
cumulativity, 
setElimination, 
rename, 
lambdaEquality, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[a,b,c:|r|].    ((a  +r  (b  +r  c))  =  (b  +r  (a  +r  c)))
Date html generated:
2016_05_15-PM-00_21_56
Last ObjectModification:
2015_12_27-AM-00_01_53
Theory : rings_1
Home
Index