Nuprl Lemma : add_grp_of_rng_wf_b

[r:Rng]. (r↓+gp ∈ AbGrp)


Proof




Definitions occuring in Statement :  add_grp_of_rng: r↓+gp rng: Rng abgrp: AbGrp uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T abgrp: AbGrp grp: Group{i} mon: Mon prop: add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) comm: Comm(T;op) rng: Rng
Lemmas referenced :  rng_wf comm_wf grp_car_wf grp_op_wf add_grp_of_rng_wf_a rng_plus_comm rng_car_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid dependent_set_memberEquality isectElimination thin setElimination rename hypothesisEquality isect_memberEquality because_Cache

Latex:
\mforall{}[r:Rng].  (r\mdownarrow{}+gp  \mmember{}  AbGrp)



Date html generated: 2016_05_15-PM-00_21_53
Last ObjectModification: 2015_12_27-AM-00_01_48

Theory : rings_1


Home Index