Nuprl Lemma : add_grp_of_rng_wf_b
∀[r:Rng]. (r↓+gp ∈ AbGrp)
Proof
Definitions occuring in Statement : 
add_grp_of_rng: r↓+gp, 
rng: Rng, 
abgrp: AbGrp, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
abgrp: AbGrp, 
grp: Group{i}, 
mon: Mon, 
prop: ℙ, 
add_grp_of_rng: r↓+gp, 
grp_car: |g|, 
pi1: fst(t), 
grp_op: *, 
pi2: snd(t), 
comm: Comm(T;op), 
rng: Rng
Lemmas referenced : 
rng_wf, 
comm_wf, 
grp_car_wf, 
grp_op_wf, 
add_grp_of_rng_wf_a, 
rng_plus_comm, 
rng_car_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lemma_by_obid, 
dependent_set_memberEquality, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[r:Rng].  (r\mdownarrow{}+gp  \mmember{}  AbGrp)
Date html generated:
2016_05_15-PM-00_21_53
Last ObjectModification:
2015_12_27-AM-00_01_48
Theory : rings_1
Home
Index