Nuprl Lemma : rng_plus_comm

[r:Rng]. ∀[a,b:|r|].  ((a +r b) (b +r a) ∈ |r|)


Proof




Definitions occuring in Statement :  rng: Rng rng_plus: +r rng_car: |r| uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rng: Rng squash: T prop: infix_ap: y and: P ∧ Q true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  rng_car_wf rng_wf equal_wf squash_wf true_wf rng_plus_wf infix_ap_wf rng_times_over_plus rng_minus_wf rng_one_wf iff_weakening_equal rng_times_over_minus rng_times_one rng_plus_assoc rng_plus_inv_assoc rng_times_wf rng_plus_inv rng_zero_wf rng_times_zero rng_plus_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:|r|].    ((a  +r  b)  =  (b  +r  a))



Date html generated: 2017_10_01-AM-08_17_30
Last ObjectModification: 2017_02_28-PM-02_02_45

Theory : rings_1


Home Index