Nuprl Lemma : rng_plus_comm
∀[r:Rng]. ∀[a,b:|r|].  ((a +r b) = (b +r a) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng: Rng
, 
rng_plus: +r
, 
rng_car: |r|
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng: Rng
, 
squash: ↓T
, 
prop: ℙ
, 
infix_ap: x f y
, 
and: P ∧ Q
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
rng_car_wf, 
rng_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_plus_wf, 
infix_ap_wf, 
rng_times_over_plus, 
rng_minus_wf, 
rng_one_wf, 
iff_weakening_equal, 
rng_times_over_minus, 
rng_times_one, 
rng_plus_assoc, 
rng_plus_inv_assoc, 
rng_times_wf, 
rng_plus_inv, 
rng_zero_wf, 
rng_times_zero, 
rng_plus_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:|r|].    ((a  +r  b)  =  (b  +r  a))
Date html generated:
2017_10_01-AM-08_17_30
Last ObjectModification:
2017_02_28-PM-02_02_45
Theory : rings_1
Home
Index