Nuprl Lemma : rng_times_zero

[r:Rng]. ∀[a:|r|].  (((0 a) 0 ∈ |r|) ∧ ((a 0) 0 ∈ |r|))


Proof




Definitions occuring in Statement :  rng: Rng rng_times: * rng_zero: 0 rng_car: |r| uall: [x:A]. B[x] infix_ap: y and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q rng: Rng cand: c∧ B infix_ap: y squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q implies:  Q
Lemmas referenced :  rng_car_wf rng_wf rng_times_wf rng_plus_zero rng_zero_wf equal_wf squash_wf true_wf rng_times_over_plus iff_weakening_equal rng_plus_cancel_l
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis extract_by_obid isectElimination setElimination rename hypothesisEquality isect_memberEquality because_Cache applyEquality independent_pairFormation lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination promote_hyp

Latex:
\mforall{}[r:Rng].  \mforall{}[a:|r|].    (((0  *  a)  =  0)  \mwedge{}  ((a  *  0)  =  0))



Date html generated: 2017_10_01-AM-08_17_24
Last ObjectModification: 2017_02_28-PM-02_02_51

Theory : rings_1


Home Index