Nuprl Lemma : rng_plus_cancel_l

[r:Rng]. ∀[a,b,c:|r|].  c ∈ |r| supposing (a +r b) (a +r c) ∈ |r|


Proof




Definitions occuring in Statement :  rng: Rng rng_plus: +r rng_car: |r| uimplies: supposing a uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) uimplies: supposing a prop: rng: Rng infix_ap: y
Lemmas referenced :  grp_op_cancel_l add_grp_of_rng_wf_a grp_subtype_igrp equal_wf rng_car_wf rng_plus_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule isect_memberEquality axiomEquality setElimination rename equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b,c:|r|].    b  =  c  supposing  (a  +r  b)  =  (a  +r  c)



Date html generated: 2016_05_15-PM-00_21_25
Last ObjectModification: 2015_12_27-AM-00_02_12

Theory : rings_1


Home Index