Nuprl Definition : ring_p

IsRing(T;plus;zero;neg;times;one) ==  IsGroup(T;plus;zero;neg) ∧ IsMonoid(T;times;one) ∧ BiLinear(T;plus;times)



Definitions occuring in Statement :  group_p: IsGroup(T;op;id;inv) monoid_p: IsMonoid(T;op;id) bilinear: BiLinear(T;pl;tm) and: P ∧ Q
Definitions occuring in definition :  group_p: IsGroup(T;op;id;inv) and: P ∧ Q monoid_p: IsMonoid(T;op;id) bilinear: BiLinear(T;pl;tm)

Latex:
IsRing(T;plus;zero;neg;times;one)  ==
    IsGroup(T;plus;zero;neg)  \mwedge{}  IsMonoid(T;times;one)  \mwedge{}  BiLinear(T;plus;times)



Date html generated: 2016_05_15-PM-00_20_21
Last ObjectModification: 2015_09_23-AM-06_25_32

Theory : rings_1


Home Index