Nuprl Definition : ring_p
IsRing(T;plus;zero;neg;times;one) ==  IsGroup(T;plus;zero;neg) ∧ IsMonoid(T;times;one) ∧ BiLinear(T;plus;times)
Definitions occuring in Statement : 
group_p: IsGroup(T;op;id;inv)
, 
monoid_p: IsMonoid(T;op;id)
, 
bilinear: BiLinear(T;pl;tm)
, 
and: P ∧ Q
Definitions occuring in definition : 
group_p: IsGroup(T;op;id;inv)
, 
and: P ∧ Q
, 
monoid_p: IsMonoid(T;op;id)
, 
bilinear: BiLinear(T;pl;tm)
Latex:
IsRing(T;plus;zero;neg;times;one)  ==
    IsGroup(T;plus;zero;neg)  \mwedge{}  IsMonoid(T;times;one)  \mwedge{}  BiLinear(T;plus;times)
Date html generated:
2016_05_15-PM-00_20_21
Last ObjectModification:
2015_09_23-AM-06_25_32
Theory : rings_1
Home
Index