Nuprl Lemma : bpa-equiv-iff-norm2

p:{2...}. ∀x,y:basic-padic(p).  (bpa-norm(p;x) bpa-norm(p;y) ∈ padic(p) ⇐⇒ bpa-equiv(p;x;y))


Proof




Definitions occuring in Statement :  padic: padic(p) bpa-norm: bpa-norm(p;x) bpa-equiv: bpa-equiv(p;x;y) basic-padic: basic-padic(p) int_upper: {i...} all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: uall: [x:A]. B[x] int_upper: {i...} nat_plus: + le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  bpa-equiv-iff-norm equal_wf basic-padic_wf bpa-norm_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf bpa-equiv_wf equal-padics padic_wf bpa-norm_wf_padic iff_wf int_upper_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_pairFormation isectElimination setElimination rename dependent_set_memberEquality because_Cache natural_numberEquality unionElimination voidElimination independent_functionElimination independent_isectElimination sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality intEquality addLevel impliesFunctionality equalityTransitivity equalitySymmetry

Latex:
\mforall{}p:\{2...\}.  \mforall{}x,y:basic-padic(p).    (bpa-norm(p;x)  =  bpa-norm(p;y)  \mLeftarrow{}{}\mRightarrow{}  bpa-equiv(p;x;y))



Date html generated: 2018_05_21-PM-03_26_21
Last ObjectModification: 2018_05_19-AM-08_23_26

Theory : rings_1


Home Index