Nuprl Lemma : bpa-equiv-iff-norm2
∀p:{2...}. ∀x,y:basic-padic(p).  (bpa-norm(p;x) = bpa-norm(p;y) ∈ padic(p) 
⇐⇒ bpa-equiv(p;x;y))
Proof
Definitions occuring in Statement : 
padic: padic(p)
, 
bpa-norm: bpa-norm(p;x)
, 
bpa-equiv: bpa-equiv(p;x;y)
, 
basic-padic: basic-padic(p)
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
bpa-equiv-iff-norm, 
equal_wf, 
basic-padic_wf, 
bpa-norm_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
bpa-equiv_wf, 
equal-padics, 
padic_wf, 
bpa-norm_wf_padic, 
iff_wf, 
int_upper_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
isectElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
because_Cache, 
natural_numberEquality, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
addLevel, 
impliesFunctionality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}p:\{2...\}.  \mforall{}x,y:basic-padic(p).    (bpa-norm(p;x)  =  bpa-norm(p;y)  \mLeftarrow{}{}\mRightarrow{}  bpa-equiv(p;x;y))
Date html generated:
2018_05_21-PM-03_26_21
Last ObjectModification:
2018_05_19-AM-08_23_26
Theory : rings_1
Home
Index