Nuprl Lemma : bpa-equiv_transitivity
∀p:{2...}. ∀a,b,c:basic-padic(p).  (bpa-equiv(p;a;b) 
⇒ bpa-equiv(p;b;c) 
⇒ bpa-equiv(p;a;c))
Proof
Definitions occuring in Statement : 
bpa-equiv: bpa-equiv(p;x;y)
, 
basic-padic: basic-padic(p)
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
bpa-equiv-equiv, 
int_upper_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
natural_numberEquality
Latex:
\mforall{}p:\{2...\}.  \mforall{}a,b,c:basic-padic(p).    (bpa-equiv(p;a;b)  {}\mRightarrow{}  bpa-equiv(p;b;c)  {}\mRightarrow{}  bpa-equiv(p;a;c))
Date html generated:
2018_05_21-PM-03_24_53
Last ObjectModification:
2018_05_19-AM-08_22_20
Theory : rings_1
Home
Index