Nuprl Lemma : bpa-equiv-equiv

[p:{2...}]. EquivRel(basic-padic(p);x,y.bpa-equiv(p;x;y))


Proof




Definitions occuring in Statement :  bpa-equiv: bpa-equiv(p;x;y) basic-padic: basic-padic(p) equiv_rel: EquivRel(T;x,y.E[x; y]) int_upper: {i...} uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T crng: CRng rng: Rng p-adic-ring: (p) ring_p: IsRing(T;plus;zero;neg;times;one) rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r rng_times: * rng_one: 1 monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) bilinear: BiLinear(T;pl;tm) ident: Ident(T;op;id) assoc: Assoc(T;op) inverse: Inverse(T;op;id;inv) infix_ap: y comm: Comm(T;op) and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] basic-padic: basic-padic(p) bpa-equiv: bpa-equiv(p;x;y) nat_plus: + int_upper: {i...} nat: le: A ≤ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True cand: c∧ B sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) squash: T guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] p-adics: p-adics(p) so_lambda: λ2x.t[x] subtract: m int_seg: {i..j-} so_apply: x[s]
Lemmas referenced :  p-adic-ring_wf crng_properties rng_properties p-mul_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf p-int_wf exp_wf2 basic-padic_wf bpa-equiv_wf int_upper_wf squash_wf true_wf p-adics_wf nat_plus_wf p-adic-property nat_plus_properties nat_properties int_upper_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf le_wf p-mul-comm all_wf eqmod_wf less-iff-le condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates add-zero int_seg_wf equal_wf subtype_rel_self iff_weakening_equal p-mul-int-cancelation-1
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename sqequalRule productElimination independent_pairFormation lambdaFormation dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination voidElimination independent_functionElimination independent_isectElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache imageElimination imageMemberEquality baseClosed equalityUniverse levelHypothesis addEquality approximateComputation dependent_pairFormation int_eqEquality minusEquality universeEquality instantiate

Latex:
\mforall{}[p:\{2...\}].  EquivRel(basic-padic(p);x,y.bpa-equiv(p;x;y))



Date html generated: 2018_05_21-PM-03_24_49
Last ObjectModification: 2018_05_19-AM-08_22_45

Theory : rings_1


Home Index