Nuprl Lemma : rng_properties
∀[r:Rng]. IsRing(|r|;+r;0;-r;*;1)
Proof
Definitions occuring in Statement : 
rng: Rng
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
rng_one: 1
, 
rng_times: *
, 
rng_minus: -r
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng: Rng
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
and: P ∧ Q
, 
monoid_p: IsMonoid(T;op;id)
, 
assoc: Assoc(T;op)
, 
ident: Ident(T;op;id)
, 
bilinear: BiLinear(T;pl;tm)
, 
squash: ↓T
, 
group_p: IsGroup(T;op;id;inv)
, 
inverse: Inverse(T;op;id;inv)
Lemmas referenced : 
rng_wf, 
squash_wf, 
sq_stable__bilinear, 
sq_stable__monoid_p, 
sq_stable__group_p, 
bilinear_wf, 
rng_one_wf, 
rng_times_wf, 
monoid_p_wf, 
and_wf, 
rng_minus_wf, 
rng_zero_wf, 
rng_plus_wf, 
rng_car_wf, 
group_p_wf, 
sq_stable__and
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[r:Rng].  IsRing(|r|;+r;0;-r;*;1)
Date html generated:
2016_05_15-PM-00_20_31
Last ObjectModification:
2016_01_15-AM-08_51_48
Theory : rings_1
Home
Index