Nuprl Lemma : rng_properties

[r:Rng]. IsRing(|r|;+r;0;-r;*;1)


Proof




Definitions occuring in Statement :  rng: Rng ring_p: IsRing(T;plus;zero;neg;times;one) rng_one: 1 rng_times: * rng_minus: -r rng_zero: 0 rng_plus: +r rng_car: |r| uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rng: Rng ring_p: IsRing(T;plus;zero;neg;times;one) prop: implies:  Q sq_stable: SqStable(P) and: P ∧ Q monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) ident: Ident(T;op;id) bilinear: BiLinear(T;pl;tm) squash: T group_p: IsGroup(T;op;id;inv) inverse: Inverse(T;op;id;inv)
Lemmas referenced :  rng_wf squash_wf sq_stable__bilinear sq_stable__monoid_p sq_stable__group_p bilinear_wf rng_one_wf rng_times_wf monoid_p_wf and_wf rng_minus_wf rng_zero_wf rng_plus_wf rng_car_wf group_p_wf sq_stable__and
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis isect_memberEquality independent_functionElimination lambdaFormation because_Cache sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality axiomEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[r:Rng].  IsRing(|r|;+r;0;-r;*;1)



Date html generated: 2016_05_15-PM-00_20_31
Last ObjectModification: 2016_01_15-AM-08_51_48

Theory : rings_1


Home Index