Nuprl Lemma : p-adics_wf

[p:ℤ]. (p-adics(p) ∈ Type)


Proof




Definitions occuring in Statement :  p-adics: p-adics(p) uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-adics: p-adics(p) subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True int_seg: {i..j-} nat: guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] lelt: i ≤ j < k so_apply: x[s]
Lemmas referenced :  nat_plus_wf int_seg_wf exp_wf2 nat_plus_subtype_nat all_wf eqmod_wf decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf int_seg_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality functionEquality extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality applyEquality lambdaEquality because_Cache dependent_set_memberEquality addEquality setElimination rename dependent_functionElimination unionElimination independent_pairFormation lambdaFormation voidElimination productElimination independent_functionElimination independent_isectElimination isect_memberEquality voidEquality minusEquality approximateComputation dependent_pairFormation int_eqEquality intEquality equalityTransitivity equalitySymmetry applyLambdaEquality axiomEquality

Latex:
\mforall{}[p:\mBbbZ{}].  (p-adics(p)  \mmember{}  Type)



Date html generated: 2018_05_21-PM-03_17_45
Last ObjectModification: 2018_05_19-AM-08_08_45

Theory : rings_1


Home Index