Nuprl Lemma : p-adic-ring_wf
∀[p:{2...}]. (ℤ(p) ∈ CRng)
Proof
Definitions occuring in Statement : 
p-adic-ring: ℤ(p)
, 
crng: CRng
, 
int_upper: {i...}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
crng: CRng
, 
rng: Rng
, 
p-adic-ring: ℤ(p)
, 
rng_sig: RngSig
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_plus: +r
, 
pi2: snd(t)
, 
rng_zero: 0
, 
rng_minus: -r
, 
rng_times: *
, 
rng_one: 1
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
bilinear: BiLinear(T;pl;tm)
, 
monoid_p: IsMonoid(T;op;id)
, 
group_p: IsGroup(T;op;id;inv)
, 
infix_ap: x f y
, 
ident: Ident(T;op;id)
, 
assoc: Assoc(T;op)
, 
inverse: Inverse(T;op;id;inv)
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
p-add: x + y
, 
p-reduce: i mod(p^n)
, 
p-int: k(p)
, 
p-minus: -(x)
, 
p-mul: x * y
, 
comm: Comm(T;op)
, 
p-adics: p-adics(p)
, 
int_seg: {i..j-}
, 
guard: {T}
, 
nat: ℕ
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
lelt: i ≤ j < k
Lemmas referenced : 
p-adics_wf, 
bfalse_wf, 
p-add_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
p-int_wf, 
p-minus_wf, 
p-mul_wf, 
it_wf, 
unit_wf2, 
bool_wf, 
p-adics-equal, 
nat_plus_wf, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
comm_wf, 
int_upper_wf, 
exp_wf2, 
nat_plus_subtype_nat, 
modulus_wf_int_mod, 
exp_wf_nat_plus, 
int_seg_wf, 
int-subtype-int_mod, 
eqmod_weakening, 
nat_plus_properties, 
int_upper_properties, 
decidable__equal_int, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
add-zero, 
p-adic-property, 
itermMinus_wf, 
int_term_value_minus_lemma, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
mul-one, 
eqmod_functionality_wrt_eqmod, 
eqmod_transitivity, 
mod-eqmod, 
add_functionality_wrt_eqmod, 
multiply_functionality_wrt_eqmod
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalRule, 
dependent_pairEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaEquality, 
productElimination, 
dependent_functionElimination, 
natural_numberEquality, 
hypothesisEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
inrEquality, 
functionEquality, 
unionEquality, 
productEquality, 
isect_memberEquality, 
axiomEquality, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
applyLambdaEquality, 
minusEquality, 
multiplyEquality
Latex:
\mforall{}[p:\{2...\}].  (\mBbbZ{}(p)  \mmember{}  CRng)
Date html generated:
2018_05_21-PM-03_20_48
Last ObjectModification:
2018_05_19-AM-08_14_17
Theory : rings_1
Home
Index