Nuprl Lemma : p-adic-ring_wf

[p:{2...}]. (ℤ(p) ∈ CRng)


Proof




Definitions occuring in Statement :  p-adic-ring: (p) crng: CRng int_upper: {i...} uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T crng: CRng rng: Rng p-adic-ring: (p) rng_sig: RngSig int_upper: {i...} nat_plus: + le: A ≤ B and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B less_than': less_than'(a;b) true: True rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r rng_times: * rng_one: 1 ring_p: IsRing(T;plus;zero;neg;times;one) bilinear: BiLinear(T;pl;tm) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) infix_ap: y ident: Ident(T;op;id) assoc: Assoc(T;op) inverse: Inverse(T;op;id;inv) cand: c∧ B rev_uimplies: rev_uimplies(P;Q) p-add: y p-reduce: mod(p^n) p-int: k(p) p-minus: -(x) p-mul: y comm: Comm(T;op) p-adics: p-adics(p) int_seg: {i..j-} guard: {T} nat: satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top lelt: i ≤ j < k
Lemmas referenced :  p-adics_wf bfalse_wf p-add_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf p-int_wf p-minus_wf p-mul_wf it_wf unit_wf2 bool_wf p-adics-equal nat_plus_wf ring_p_wf rng_car_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf comm_wf int_upper_wf exp_wf2 nat_plus_subtype_nat modulus_wf_int_mod exp_wf_nat_plus int_seg_wf int-subtype-int_mod eqmod_weakening nat_plus_properties int_upper_properties decidable__equal_int int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma add-zero p-adic-property itermMinus_wf int_term_value_minus_lemma itermMultiply_wf int_term_value_mul_lemma mul-one eqmod_functionality_wrt_eqmod eqmod_transitivity mod-eqmod add_functionality_wrt_eqmod multiply_functionality_wrt_eqmod
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalRule dependent_pairEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis lambdaEquality productElimination dependent_functionElimination natural_numberEquality hypothesisEquality unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination applyEquality inrEquality functionEquality unionEquality productEquality isect_memberEquality axiomEquality independent_pairEquality equalityTransitivity equalitySymmetry addEquality approximateComputation dependent_pairFormation int_eqEquality intEquality voidEquality applyLambdaEquality minusEquality multiplyEquality

Latex:
\mforall{}[p:\{2...\}].  (\mBbbZ{}(p)  \mmember{}  CRng)



Date html generated: 2018_05_21-PM-03_20_48
Last ObjectModification: 2018_05_19-AM-08_14_17

Theory : rings_1


Home Index