Nuprl Lemma : cdrng_is_abdgrp
∀[r:CDRng]. (r↓+gp ∈ AbDGrp)
Proof
Definitions occuring in Statement : 
add_grp_of_rng: r↓+gp
, 
cdrng: CDRng
, 
abdgrp: AbDGrp
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cdrng: CDRng
, 
abdgrp: AbDGrp
, 
crng: CRng
, 
grp_car: |g|
, 
pi1: fst(t)
, 
add_grp_of_rng: r↓+gp
, 
rng_car: |r|
, 
grp_eq: =b
, 
pi2: snd(t)
, 
rng_eq: =b
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
mon: Mon
, 
prop: ℙ
Lemmas referenced : 
cdrng_properties, 
cdrng_wf, 
add_grp_of_rng_wf_b, 
eqfun_p_wf, 
grp_car_wf, 
grp_eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality, 
sqequalRule, 
because_Cache
Latex:
\mforall{}[r:CDRng].  (r\mdownarrow{}+gp  \mmember{}  AbDGrp)
Date html generated:
2018_05_21-PM-03_14_38
Last ObjectModification:
2018_05_19-AM-08_07_51
Theory : rings_1
Home
Index