Nuprl Lemma : cdrng_is_abdgrp

[r:CDRng]. (r↓+gp ∈ AbDGrp)


Proof




Definitions occuring in Statement :  add_grp_of_rng: r↓+gp cdrng: CDRng abdgrp: AbDGrp uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cdrng: CDRng abdgrp: AbDGrp crng: CRng grp_car: |g| pi1: fst(t) add_grp_of_rng: r↓+gp rng_car: |r| grp_eq: =b pi2: snd(t) rng_eq: =b abgrp: AbGrp grp: Group{i} mon: Mon prop:
Lemmas referenced :  cdrng_properties cdrng_wf add_grp_of_rng_wf_b eqfun_p_wf grp_car_wf grp_eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename dependent_set_memberEquality sqequalRule because_Cache

Latex:
\mforall{}[r:CDRng].  (r\mdownarrow{}+gp  \mmember{}  AbDGrp)



Date html generated: 2018_05_21-PM-03_14_38
Last ObjectModification: 2018_05_19-AM-08_07_51

Theory : rings_1


Home Index