Nuprl Lemma : comb_for_choose_wf
λn,i,z. choose(n;i) ∈ n:ℕ ⟶ i:{0...n} ⟶ (↓True) ⟶ ℕ
Proof
Definitions occuring in Statement : 
choose: choose(n;i)
, 
int_iseg: {i...j}
, 
nat: ℕ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat: ℕ
Lemmas referenced : 
choose_wf, 
squash_wf, 
true_wf, 
int_iseg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
natural_numberEquality, 
setElimination, 
rename
Latex:
\mlambda{}n,i,z.  choose(n;i)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  i:\{0...n\}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbN{}
Date html generated:
2016_05_15-PM-00_26_34
Last ObjectModification:
2015_12_26-PM-11_59_39
Theory : rings_1
Home
Index