Nuprl Lemma : comb_for_choose_wf

λn,i,z. choose(n;i) ∈ n:ℕ ⟶ i:{0...n} ⟶ (↓True) ⟶ ℕ


Proof




Definitions occuring in Statement :  choose: choose(n;i) int_iseg: {i...j} nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: nat:
Lemmas referenced :  choose_wf squash_wf true_wf int_iseg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry natural_numberEquality setElimination rename

Latex:
\mlambda{}n,i,z.  choose(n;i)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  i:\{0...n\}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbN{}



Date html generated: 2016_05_15-PM-00_26_34
Last ObjectModification: 2015_12_26-PM-11_59_39

Theory : rings_1


Home Index