Nuprl Lemma : choose_wf

[n:ℕ]. ∀[i:{0...n}].  (choose(n;i) ∈ ℕ)


Proof




Definitions occuring in Statement :  choose: choose(n;i) int_iseg: {i...j} nat: uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q choose: choose(n;i) ycomb: Y int_iseg: {i...j} bool: 𝔹 unit: Unit it: btrue: tt iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q ifthenelse: if then else fi  le: A ≤ B less_than': less_than'(a;b) bfalse: ff subtract: m guard: {T} subtype_rel: A ⊆B cand: c∧ B
Lemmas referenced :  int_iseg_wf nat_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma bor_wf eq_int_wf bool_wf iff_transitivity equal-wf-T-base assert_wf or_wf iff_weakening_uiff eqtt_to_assert assert_of_bor assert_of_eq_int false_wf le_wf band_wf bnot_wf not_wf bnot_thru_bor eqff_to_assert assert_of_band assert_of_bnot int_iseg_properties intformeq_wf int_formula_prop_eq_lemma equal_wf int_subtype_base add_nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality equalityTransitivity hypothesis equalitySymmetry extract_by_obid natural_numberEquality setElimination rename intWeakElimination lambdaFormation independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination because_Cache equalityElimination baseClosed orFunctionality productElimination dependent_set_memberEquality productEquality impliesFunctionality applyEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\{0...n\}].    (choose(n;i)  \mmember{}  \mBbbN{})



Date html generated: 2017_10_01-AM-08_18_48
Last ObjectModification: 2017_02_28-PM-02_03_40

Theory : rings_1


Home Index