Nuprl Lemma : bor_wf

[p,q:𝔹].  (p ∨bq ∈ 𝔹)


Proof




Definitions occuring in Statement :  bor: p ∨bq bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bor: p ∨bq all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff prop:
Lemmas referenced :  bool_wf eqtt_to_assert btrue_wf uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination because_Cache productElimination independent_isectElimination baseClosed independent_functionElimination equalityTransitivity equalitySymmetry dependent_functionElimination axiomEquality Error :inhabitedIsType,  isect_memberEquality Error :universeIsType

Latex:
\mforall{}[p,q:\mBbbB{}].    (p  \mvee{}\msubb{}q  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-AM-11_30_59
Last ObjectModification: 2018_09_26-AM-11_13_39

Theory : bool_1


Home Index