Nuprl Lemma : uiff_transitivity
∀[P,Q,R:ℙ]. (uiff(P;Q)
⇒ uiff(Q;R)
⇒ uiff(P;R))
Proof
Definitions occuring in Statement :
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
implies: P
⇒ Q
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
prop: ℙ
,
member: t ∈ T
Lemmas referenced :
uiff_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairFormation,
independent_isectElimination,
hypothesis,
Error :universeIsType,
hypothesisEquality,
cut,
introduction,
extract_by_obid,
isectElimination,
Error :inhabitedIsType,
universeEquality
Latex:
\mforall{}[P,Q,R:\mBbbP{}]. (uiff(P;Q) {}\mRightarrow{} uiff(Q;R) {}\mRightarrow{} uiff(P;R))
Date html generated:
2019_06_20-AM-11_14_22
Last ObjectModification:
2018_09_26-AM-10_41_54
Theory : core_2
Home
Index