Nuprl Lemma : bnot_thru_bor

[p,q:Top].  b(p ∨bq) bp) ∧b bq))


Proof




Definitions occuring in Statement :  bor: p ∨bq band: p ∧b q bnot: ¬bb uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bnot: ¬bb ifthenelse: if then else fi  bor: p ∨bq so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T btrue: tt bfalse: ff it: band: p ∧b q
Lemmas referenced :  lifting-strict-decide top_wf equal_wf has-value_wf_base base_wf is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesis hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation sqequalAxiom

Latex:
\mforall{}[p,q:Top].    (\mneg{}\msubb{}(p  \mvee{}\msubb{}q)  \msim{}  (\mneg{}\msubb{}p)  \mwedge{}\msubb{}  (\mneg{}\msubb{}q))



Date html generated: 2017_04_14-AM-07_29_52
Last ObjectModification: 2017_02_27-PM-02_58_30

Theory : bool_1


Home Index