Nuprl Lemma : int_iseg_properties

[i,j:ℤ]. ∀[y:{i...j}].  ((i ≤ y) ∧ (y ≤ j))


Proof




Definitions occuring in Statement :  int_iseg: {i...j} uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_iseg: {i...j} prop: implies:  Q sq_stable: SqStable(P) le: A ≤ B and: P ∧ Q not: ¬A false: False squash: T
Lemmas referenced :  int_iseg_wf squash_wf less_than'_wf sq_stable__le le_wf sq_stable__and
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis isect_memberEquality independent_functionElimination lambdaFormation because_Cache sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality voidElimination axiomEquality imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[y:\{i...j\}].    ((i  \mleq{}  y)  \mwedge{}  (y  \mleq{}  j))



Date html generated: 2016_05_13-PM-04_02_08
Last ObjectModification: 2016_01_14-PM-07_24_35

Theory : int_1


Home Index