Nuprl Lemma : comb_for_rng_nat_op_wf
λr,n,u,z. (n ⋅r u) ∈ r:Rng ⟶ n:ℕ ⟶ u:|r| ⟶ (↓True) ⟶ |r|
Proof
Definitions occuring in Statement : 
rng_nat_op: n ⋅r e
, 
rng: Rng
, 
rng_car: |r|
, 
nat: ℕ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rng: Rng
Lemmas referenced : 
rng_nat_op_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
nat_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
setElimination, 
rename
Latex:
\mlambda{}r,n,u,z.  (n  \mcdot{}r  u)  \mmember{}  r:Rng  {}\mrightarrow{}  n:\mBbbN{}  {}\mrightarrow{}  u:|r|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |r|
Date html generated:
2016_05_15-PM-00_26_49
Last ObjectModification:
2015_12_26-PM-11_59_29
Theory : rings_1
Home
Index