Nuprl Lemma : comb_for_rng_nat_op_wf

λr,n,u,z. (n ⋅u) ∈ r:Rng ⟶ n:ℕ ⟶ u:|r| ⟶ (↓True) ⟶ |r|


Proof




Definitions occuring in Statement :  rng_nat_op: n ⋅e rng: Rng rng_car: |r| nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: rng: Rng
Lemmas referenced :  rng_nat_op_wf squash_wf true_wf rng_car_wf nat_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry setElimination rename

Latex:
\mlambda{}r,n,u,z.  (n  \mcdot{}r  u)  \mmember{}  r:Rng  {}\mrightarrow{}  n:\mBbbN{}  {}\mrightarrow{}  u:|r|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |r|



Date html generated: 2016_05_15-PM-00_26_49
Last ObjectModification: 2015_12_26-PM-11_59_29

Theory : rings_1


Home Index