Nuprl Lemma : rng_nat_op_wf
∀[r:Rng]. ∀[n:ℕ]. ∀[u:|r|].  (n ⋅r u ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_nat_op: n ⋅r e
, 
rng: Rng
, 
rng_car: |r|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
rng_nat_op: n ⋅r e
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
rng: Rng
Lemmas referenced : 
mon_nat_op_wf2, 
add_grp_of_rng_wf_a, 
nat_subtype, 
rng_car_wf, 
nat_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
isect_memberEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[u:|r|].    (n  \mcdot{}r  u  \mmember{}  |r|)
Date html generated:
2016_05_15-PM-00_26_46
Last ObjectModification:
2015_12_26-PM-11_59_34
Theory : rings_1
Home
Index