Nuprl Lemma : rng_nat_op_wf

[r:Rng]. ∀[n:ℕ]. ∀[u:|r|].  (n ⋅u ∈ |r|)


Proof




Definitions occuring in Statement :  rng_nat_op: n ⋅e rng: Rng rng_car: |r| nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  rng_nat_op: n ⋅e uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) rng: Rng
Lemmas referenced :  mon_nat_op_wf2 add_grp_of_rng_wf_a nat_subtype rng_car_wf nat_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry setElimination rename isect_memberEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[u:|r|].    (n  \mcdot{}r  u  \mmember{}  |r|)



Date html generated: 2016_05_15-PM-00_26_46
Last ObjectModification: 2015_12_26-PM-11_59_34

Theory : rings_1


Home Index