Nuprl Lemma : drng_wf
DRng ∈ 𝕌'
Proof
Definitions occuring in Statement : 
drng: DRng
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
drng: DRng
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
rng_sig_wf, 
and_wf, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
eqfun_p_wf, 
rng_eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
cumulativity, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality
Latex:
DRng  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_15-PM-00_20_28
Last ObjectModification:
2015_12_27-AM-00_02_52
Theory : rings_1
Home
Index