Step
*
2
1
1
1
of Lemma
greatest-p-zero-property
1. p : ℕ+
2. a : p-adics(p)
3. n : ℤ
4. ¬n < 1
5. 0 < n
6. greatest-p-zero(n - 1;a) ≤ (n - 1)
7. ∀i:ℕ+(n - 1) + 1
(((i ≤ greatest-p-zero(n - 1;a))
⇒ ((a i) = 0 ∈ ℤ)) ∧ (greatest-p-zero(n - 1;a) < i
⇒ (¬((a i) = 0 ∈ ℤ))))
8. 0 < n
9. (a n) = 0 ∈ ℤ
10. n ≤ n
11. i : ℕ+n + 1
12. i ≤ n
⊢ (a i) ≤ (a n)
BY
{ (BLemma `p-adic-non-decreasing` THEN Auto) }
Latex:
Latex:
1. p : \mBbbN{}\msupplus{}
2. a : p-adics(p)
3. n : \mBbbZ{}
4. \mneg{}n < 1
5. 0 < n
6. greatest-p-zero(n - 1;a) \mleq{} (n - 1)
7. \mforall{}i:\mBbbN{}\msupplus{}(n - 1) + 1
(((i \mleq{} greatest-p-zero(n - 1;a)) {}\mRightarrow{} ((a i) = 0))
\mwedge{} (greatest-p-zero(n - 1;a) < i {}\mRightarrow{} (\mneg{}((a i) = 0))))
8. 0 < n
9. (a n) = 0
10. n \mleq{} n
11. i : \mBbbN{}\msupplus{}n + 1
12. i \mleq{} n
\mvdash{} (a i) \mleq{} (a n)
By
Latex:
(BLemma `p-adic-non-decreasing` THEN Auto)
Home
Index