Nuprl Lemma : integ_dom_wf

IntegDom{i} ∈ 𝕌'


Proof




Definitions occuring in Statement :  integ_dom: IntegDom{i} member: t ∈ T universe: Type
Definitions unfolded in proof :  integ_dom: IntegDom{i} member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  crng_wf integ_dom_p_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity setEquality cut lemma_by_obid hypothesis cumulativity sqequalHypSubstitution isectElimination thin hypothesisEquality

Latex:
IntegDom\{i\}  \mmember{}  \mBbbU{}'



Date html generated: 2016_05_15-PM-00_22_36
Last ObjectModification: 2015_12_27-AM-00_01_15

Theory : rings_1


Home Index