Nuprl Lemma : integ_dom_wf
IntegDom{i} ∈ 𝕌'
Proof
Definitions occuring in Statement : 
integ_dom: IntegDom{i}
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
integ_dom: IntegDom{i}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
crng_wf, 
integ_dom_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
cumulativity, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality
Latex:
IntegDom\{i\}  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_15-PM-00_22_36
Last ObjectModification:
2015_12_27-AM-00_01_15
Theory : rings_1
Home
Index