Nuprl Lemma : mkpadic_wf
∀[p:ℕ+]. ∀[n:ℕ]. ∀[a:p-adics(p)].  ((a/p^n) ∈ padic(p))
Proof
Definitions occuring in Statement : 
mkpadic: (a/p^n)
, 
padic: padic(p)
, 
p-adics: p-adics(p)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mkpadic: (a/p^n)
, 
basic-padic: basic-padic(p)
, 
nat_plus: ℕ+
Lemmas referenced : 
bpa-norm_wf_padic, 
p-adics_wf, 
nat_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[a:p-adics(p)].    ((a/p\^{}n)  \mmember{}  padic(p))
Date html generated:
2018_05_21-PM-03_26_28
Last ObjectModification:
2018_05_19-AM-08_23_34
Theory : rings_1
Home
Index